AIES 163 – “What’s your stake in the sustainability of AI?: An informed insider’s guide”
Paper Link

Full paper: https://filedn.eu/lldOHjCIRMjfewo3JirFYqh/website-documents/Website/AIES-24-163.pdf

References

[1] 1. David Patterson, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. 2022. The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. Computer 55, 7: 18–28. https://doi.org/10.1109/MC.2022.3148714
[2] Erik Kojola. 2023. ChatCO2 – Safeguards Needed For AI’s Climate Risks -. Retrieved May 10, 2024 from https://www.greenpeace.org/usa/chatco2-safeguards-needed-for-ais-climate-risks/
[3] Mél Hogan. 2015. Data flows and water woes: The Utah Data Center. Big Data & Society 2, 2: 2053951715592429. https://doi.org/10.1177/2053951715592429
[5] Pengfei Li, Jianyi Yang, Mohammad A. Islam, and Shaolei Ren. 2023. Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models. Retrieved May 2, 2024 from http://arxiv.org/abs/2304.03271
[6] Steven Gonzalez Monserrate. 2022. The staggering ecological impacts of computation and the cloud. MIT Schwarzman College of Computing. Retrieved May 2, 2024 from https://computing.mit.edu/news/the-staggering-ecological-impacts-of-computation-and-the-cloud/
[7] Payal Dhar. 2020. The carbon impact of artificial intelligence. Nature Machine Intelligence 2, 8: 423–425. https://doi.org/10.1038/s42256-020-0219-9
[8] Eric Griffith. 2023. GPT-4 vs. ChatGPT-3.5: What’s the Difference? PCMAG. Retrieved January 3, 2024 from https://www.pcmag.com/news/the-new-chatgpt-what-you-get-with-gpt-4-vs-gpt-35